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 10 

Abstract. An Ensemble Kalman Filter data assimilation (DA) system has been 11 

developed to improve air quality forecasts using surface measurements of PM10, PM2.5, 12 

SO2, NO2, O3 and CO together with an online regional chemical transport model, WRF-13 

Chem (Weather Research and Forecasting with Chemistry). This DA system was 14 

applied to simultaneously adjust the chemical initial conditions (ICs) and emission 15 

inputs of the species affecting PM10, PM2.5, SO2, NO2, O3 and CO concentrations during 16 

an extreme haze episode that occurred in early October 2014 over the East Asia. 17 

Numerical experimental results indicate that ICs play key roles in PM2.5, PM10 and CO 18 

forecasts during the severe haze episode over the North China Plain. The 72-h 19 

verification forecasts with the optimized ICs and emissions performed very similarly to 20 

the verification forecasts with only optimized ICs and the prescribed emissions. For the 21 

first-day forecast, near perfect verification forecasts results were achieved. However, 22 

with longer range forecasts, the DA impacts decayed quickly. For the SO2 verification 23 

forecasts, it was efficient to improve the SO2 forecast via the joint adjustment of SO2 24 

ICs and emissions. Large improvements were achieved for SO2 forecasts with both the 25 

optimized ICs and emissions for the whole 72-h forecast range. Similar improvements 26 

were achieved for SO2 forecasts with optimized ICs only for just the first 3 h, and then 27 

the impact of the ICs decayed quickly. For the NO2 verification forecasts, both forecasts 28 

performed much worse than the control run without DA. Plus, the 72-h O3 verification 29 
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forecasts performed worse than the control run during the daytime, due to the worse 30 

performance of the NO2 forecasts, even though they performed better at night. However, 31 

relatively favorable NO2 and O3 forecast results were achieved for the Yangtze River 32 

delta and Pearl River delta regions. 33 

 34 

1 Introduction 35 

Predicting and simulating air quality remains a challenge in heavily polluted regions 36 

(Wang et al., 2014; Ding et al. 2016). Chemical data assimilation (DA), which 37 

combines observations and model simulations, is recognized as one effective method 38 

to improve air quality forecasts. It has been widely used to assimilate aerosol 39 

measurements from both ground-based and space-borne platforms, including surface 40 

PM10 observations (Jiang et al., 2013; Pagowski et al., 2014), surface PM2.5 41 

observations (Li et al., 2013; Zhang, 2016), Lidar observations (Yumimoto et al., 2007, 42 

2008), aerosol optical depth products from AERONET (the AErosol RObotic 43 

NETwork) (Schutgens et al., 2010a-b, 2012), and from various satellites (Sekiyama et 44 

al., 2010; Liu et al., 2011; Dai et al., 2014). These studies indicate that assimilating 45 

observations can substantially improve the spatiotemporal variations of aerosol in the 46 

simulation and forecasts. 47 

Aerosols are not only primarily emitted, but also with a larger portion secondary 48 

formed through reactions with several gaseous-phases precursors and oxidants in the 49 

atmosphere (Huang et al., 2014; Nie et al., 2014; Xie et al., 2015). So, observations of 50 

trace gases are also useful in assimilating data for aerosol simulations and forecasts. 51 

Efforts to assimilate atmospheric-composition observations, like O3, SO2, NO, NO2, 52 

CO, and NH3, have also been made. For example, Elbern et al. (1997, 1999, 2000, 2001, 53 

2007) developed a 4D-VAR (four-dimensional variational) system to assimilate surface 54 

measurements of O3, SO2, NO and NO2 to improve air quality forecasts with the joint 55 

adjustment of initial conditions (ICs) and emission rates. Later, van Loon et al. (2000) 56 

assimilated O3 in the transport chemistry model LOTOS, based on an Ensemble Kalman 57 

Filter (EnKF). Heemink and Segers (2002) attempted to reconstruct NOx and volatile 58 

organic compound (VOC) emissions for O3 forecasting by assimilating O3. Carmichael 59 
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et al. (2003, 2008a, 2008b) developed 4D-VAR and EnKF systems to assimilate O3 and 60 

NO2 to improve ICs and emission sources for O3 forecasting. Hakami et al. (2005) 61 

constrained black carbon (BC) emissions during the Asian Pacific Regional Aerosol 62 

Characterization Experiment. Henze et al. (2007, 2009) estimated SOx, NOx and NH3 63 

emissions based on a 4D-VAR method by assimilating surface sulfate and nitrate 64 

aerosol observations. Other studies have estimated the NOx (van der et al., 2006, 2017; 65 

Mijling et al., 2009, 2012, 2013; Ding. et al., 2015) and SO2 emissions (van der et al., 66 

2017) based on an extended Kalman filter by assimilating SO2 and NO2 retrievals from 67 

SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric 68 

CHartographY) and OMI (Ozone Monitoring Instrument). Barbu et al. (2009) applied 69 

an EnKF to optimize the emissions and conversion rates using surface measurements 70 

of SO2 and sulfate. McLinden (2016) constrained SO2 emissions using space-based 71 

observations. 72 

In recent years, severe haze pollution episodes have begun to occur more 73 

frequently in China, especially in the megacity clusters of eastern China (e.g., Parrish 74 

and Zhu, 2009; Sun et al., 2015; Zhang et al., 2015a). Thus, regional haze, especially 75 

when accompanied by extremely high PM2.5 concentrations, has drawn significant 76 

research interest. However, there are large uncertainties involved in the numerical 77 

prediction of atmospheric aerosols. During severe haze pollution episodes, air quality 78 

models often underestimate the extreme peak mass concentration of particulate matter 79 

(Wang et al., 2014). Previous studies have revealed that the assimilation of atmospheric-80 

composition observations can improve air quality forecasts by constraining the 81 

uncertainties of both the chemical ICs and emissions (Tang et al., 2010, 2011, 2013, 82 

2016; Miyazaki et al., 2012, 2013, 2014). Peng et al. (2017) demonstrated that 83 

significant improvements in forecasting PM2.5 can be achieved via the joint adjustment 84 

of ICs and source emissions using an EnKF to assimilate surface PM2.5 observations. 85 

In 2013, China launched an atmospheric environmental monitoring system that 86 

provides real-time and online atmospheric chemical observations, including PM10, 87 

PM2.5, SO2, NO2, O3, and CO (http://113.108.142.147:20035/emcpublish/). This 88 

dataset provides an opportunity to improve air quality forecasts using DA. However, 89 
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such fruitful observations are less used in air quality forecast despite of large 90 

discrepancy existed between the forecast and observations. But it is now possible to 91 

estimate the impact on forecast improvement of simultaneously assimilating various 92 

surface observations. Thus, we developed an EnKF system that can simultaneously 93 

assimilate surface measurements of PM10, PM2.5, SO2, NO2, O3 and CO to correct WRF-94 

Chem (Weather Research and Forecasting model with Chemistry) forecasts using the 95 

Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol scheme. As 96 

an extension to Peng et al. (2017), the impact of simultaneously assimilating various 97 

surface aerosol and chemical observations was investigated. 98 

Sections 2 and 3 briefly describe the DA system and observations used in this 99 

study, respectively. The experimental design is introduced in Section 4. Finally, the 100 

assimilation results are presented in Section 5, before a brief summary in Section 6. 101 

 102 

2 DA system 103 

The DA system in this study was the same as the one used in Peng et al. (2017). It 104 

can simultaneously analyze the chemical ICs and emissions with the assimilation of 105 

surface PM2.5 observations. A brief summary of the DA system is introduced here. 106 

In every DA cycle, the ensemble emission scaling factors 𝛌f are first calculated 107 

by the forecast model of scaling factors 𝐌SF (see details of 𝐌SF in section 2.2). Then, 108 

the ensemble forecast emissions 𝐄f are calculated using the following equation: 109 

𝐄𝑖,𝑡 = 𝛌𝑖,𝑡𝐄𝑡
p

, (𝑖 = 1, … , 𝑁),                         (1) 110 

where 𝐄𝑡
p

 is the prescribed anthropogenic emission. The ensemble members of 111 

chemical fields 𝐂f are forecasted using WRF-Chem, forced by the forecast emissions 112 

𝐄f whose ICs are previously analyzed concentration fields. Now, the background of 113 

the joint vector, 𝐱f = [𝐂f, 𝛌f]
T

, has been produced. Then, the analyzed state vector, 114 

𝐱a = [𝐂a, 𝛌a]T, is optimized using an ensemble square root filter (EnSRF). Finally, the 115 

assimilated emissions 𝐄a can be obtained using equation (1). 116 

 117 

2.1 WRF-Chem model 118 
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The model used to simulate the transport of aerosols and chemical species was the 119 

WRF-Chem (Grell et al., 2005). As in Peng et al. (2017), we used version 3.6.1 and the 120 

physical and chemical parameterization options are listed in Table 1. The model 121 

computational domain covered almost the whole China and the horizontal resolution 122 

was 40.5 km. Figure 1b shows our area of interest, the North China Plain (NCP). The 123 

model included 57 vertical levels and the model top was 10 hPa. 124 

The hourly prior anthropogenic emissions were based on the Multi-resolution 125 

Emission Inventory for China (MEIC) (Li et al., 2014) for October 2010, instead of the 126 

regional emission inventory in Asia (Zhang et al., 2009) for the year 2006 in Peng et al. 127 

(2017). The reason we chose the MEIC-2010 was that the total emissions are reasonable 128 

for cities over the NCP (Zheng et al., 2016). The original resolution of the MEIC-2010 129 

is 0.25° × 0.25°, but has been processed to match the model resolution (40.5 km) (Chen 130 

et al., 2016). No time variation was added to maintain objectivity in the prior 131 

anthropogenic emissions. 132 

 133 

2.2 Forecast model of scaling factors 134 

In this work, the primary sources to be optimized were the emissions of PM10, PM2.5, 135 

SO2, NO, NH3 and CO. The sources of NH3 were analyzed because they also impact 136 

greatly on the aerosols distribution. Thus, the emission scaling factors 𝛌𝑖,𝑡
f =137 

( 𝛌PM2.5
f , 𝛌PM10

f , 𝛌SO2
f , 𝛌NO

f , 𝛌NH3
f , 𝛌CO

f ) were prepared by the forecast model of scaling 138 

operator 𝐌SF before WRF-Chem integration. 139 

We used the same persistence forecast operator 𝐌SF to forecast 𝛌𝑖,𝑡
f  as in Peng 140 

et al. (2017). The forecast operator was developed by using the ensemble forecast 141 

chemical fields. Thus,  142 

𝛋𝑖,𝑡 =
𝐂𝑖,𝑡

f

𝐂𝑡
f̅̅ ̅̅̅ ̅ , (𝑖 = 1, … , 𝑁),                                    (2) 143 

(𝛋𝑖,𝑡)inf = 𝛽(𝛋𝑖,𝑡 − 𝛋𝑡̅̅ ̅) +  𝛋𝑡̅̅ ̅, (𝑖 = 1, … , 𝑁),                   (3) 144 

𝛌𝑖,𝑡
p

= (𝛋𝑖,𝑡)inf,                                            (4) 145 

𝛌𝑖,𝑡
f  =

1

4
(𝛌𝑖,𝑡−3

a + 𝛌𝑖,𝑡−2
a + 𝛌𝑖,𝑡−1

a + 𝛌𝑖,𝑡
p

), ( 𝑖 = 1, … , 𝑁),          (5) 146 
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where 𝐂𝑖,𝑡
f   is the 𝑖th ensemble member of the chemical fields at time 𝑡, and 𝐂𝑡

f̅̅ ̅ =147 

1

𝑁
∑ 𝐂𝑖,𝑡

f𝑁
𝑖=1  is the ensemble mean; 𝛋𝑖,𝑡 is the ensemble concentration ratios and 𝛋𝑡̅̅ ̅ is 148 

the ensemble mean of 𝛋𝑖,𝑡  with values of 1; 𝛽  is the inflation factor to keep the 149 

ensemble spreads of 𝛋𝑖,𝑡 at a certain level; 𝛌𝑖,𝑡−1
a , 𝛌𝑖,𝑡−2

a  and 𝛌𝑖,𝑡−3
a  are the previous 150 

assimilated emission scaling factors. 151 

In this study, the ensemble forecast chemical fields of PM25, PM10, SO2, NO, NH3 152 

and CO of the previous assimilation cycle are respectively used to calculate the 153 

emission scaling factors ( 𝛌PM2.5
f , 𝛌PM10

f , 𝛌SO2
f , 𝛌NO

f , 𝛌NH3
f , 𝛌CO

f ). 𝛽 is chosen as 1.3, 154 

1.4, 1.3, 1.2, 1.2, and 1.4 for the ensemble concentration ratios of P25, P10, SO2, NO, 155 

NH3 and CO, respectively in Equation (3). 156 

Then, the sources 𝐄𝑖,𝑡
f = ( 𝐄PM2.5

f , 𝐄PM10
f , 𝐄SO2

f , 𝐄NO
f , 𝐄NH3

f , 𝐄CO
f )  are calculated 157 

using equation (1). 158 

From the perspective of PM2.5 emissions, these include the unspeciated primary 159 

sources of PM2.5 𝐄PM2.5, sulfate 𝐄SO4, nitrate 𝐄NO3, organic compounds 𝐄org and 160 

elemental compounds 𝐄BC . We updated 𝐄PM2.5 , 𝐄SO4  and 𝐄NO3  (including the 161 

nuclei and accumulation modes) following Peng et al. (2017). 162 

 163 

2.3 DA algorithm 164 

The assimilation algorithm employed was the EnSRF proposed by Whitaker and Hamill 165 

(2002). The EnKF proposed by Evensen (1994) needs perturbations of observations in 166 

practice. Compared to the original EnKF, the EnSRF obviates the need to perturb the 167 

observations and avoids additional sampling errors introduced by perturbing 168 

observations. 169 

We used the same EnSRF as in Schwartz et al. (2012, 2014). The ensemble 170 

member was chosen as 50. The localization radius was chosen as 607.5 km, so EnSRF 171 

analysis increments were forced to zero at 607.5 km away from an observation (Gaspari 172 

and Cohn, 1999). The posterior (after assimilation) multiplicative inflation factor was 173 

chose as 1.2 for all the concentration analysis. 174 
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 175 

2.4 State variables 176 

The DA system provides joint analysis of ICs and emissions following Peng et al. 177 

(2017). Among them, 16 WRF-Chem/GOCART aerosol variables are included as the 178 

state variables. Besides, chemical species, such as SO2, NO2 and O3 are also included 179 

because they are the most important gas-phase precursors or oxidants of the secondary 180 

inorganic aerosols. CO is also assimilated because CO is an important tracer of 181 

combustion sources, as well as a precursor of O3 beyond NO2 (Parrish et al., 1991). The 182 

state variables of the emission scaling factors are 𝛌 =183 

( 𝛌PM2.5, 𝛌PM10, 𝛌SO2, 𝛌NO, 𝛌NH3, 𝛌CO). 184 

Similar to weak-coupling DA, the DA system simultaneously updates both the ICs 185 

and the emissions, but with no cross-variable update, in order to avoid the effects of 186 

spurious multivariate correlations in the background error covariance that may develop 187 

due to the limited ensemble size and errors in both the model and observations 188 

(Miyazaki et al. 2012). 189 

For the PM2.5 observations, the observation operator is expressed as (Schwartz et 190 

al., 2012) 191 

𝑦pm25
f = 𝛒d[𝐏𝟐𝟓 + 1.375𝐒 + 1.8(𝐎𝐂𝟏 + 𝐎𝐂𝟐) + 𝐁𝐂𝟏 + 𝐁𝐂𝟐 192 

+𝐃𝟏 + 0.286𝐃𝟐 + 𝐒𝟏 + 0.942𝐒𝟐],             (6) 193 

where 𝛒d is the dry air density; P25 is the fine unspectiated aerosol contributions; S 194 

represents sulfate; OC1  and OC2  are hydrophobic and hydrophilic organic carbon 195 

respectively; BC1 and BC2 are hydrophobic and hydrophilic black carbon respectively; 196 

D1 and D2 are dusts with effective radii of 0.5 and 1.4 μm espectively; S1 and S2 are 197 

sea salts with effective radii of 0.3 and 1.0 μm espectively. In fact, PM2.5 observations 198 

were only used to analyze P25, S, OC1, OC2 BC1, BC2, D1, D2, S1, S2 and 𝛌PM2.5. Since 199 

we had no NH3 observations, PM2.5 observations were also used to analyze 𝛌NH3 (see 200 

Table 2). For other control variables, PM2.5 observations were not allowed to alter them. 201 

For the PM10 observations, the PM10 observation operator is expressed as (Jiang 202 

et al., 2013) 203 
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𝑦pm10
f = 𝛒d[𝐏𝟏𝟎 + 𝐏𝟐𝟓 + 1.375𝐒 + 1.8(𝐎𝐂𝟏 + 𝐎𝐂𝟐) + 𝐁𝐂𝟏 + 𝐁𝐂𝟐 204 

+𝐃𝟏 + 0.286𝐃𝟐 + 𝐃𝟑 + 0.87𝐃𝟒 + 𝐒𝟏 + 0.942𝐒𝟐 + 𝐒𝟑]. (7) 205 

Thus,  206 

𝑦pm10−2.5
f = 𝛒d[𝐏𝟏𝟎 + 𝐃𝟑 + 0.87𝐃𝟒 + 𝐒𝟑],                   (8) 207 

meaning that, in the assimilation experiments, we did not use the PM10 observations 208 

directly. In equation (13) and (14), P10 denotes the coarse-mode unspectiated aerosol 209 

contributions; D3 and D4 are dusts with effective radii of 2.4 and 4.5 μm respectively; 210 

S3 is sea salt with effective radii of 3.25 μm. We used the PM10-2.5 observations (the 211 

differences between the PM10 observations and the PM2.5 observations, 𝑦pm10−2.5
o =212 

𝑦pm10
o − 𝑦pm10

o ) to analyze P10, D3, D4, S3 and 𝛌PM10 . In addition, PM10-2.5 213 

observations were used to analyze D5 and S4, since they are coarse-mode mineral dust 214 

and sea salt aerosols. PM10-2.5 observations were not allowed to impact other control 215 

variables. 216 

Moreover, as shown in Table 2, SO2 observations were used to analyze the SO2 217 

concentration and 𝛌SO2 . NO2 observations were used to estimate the NO, NO2 218 

concentration and 𝛌NO. CO observations were used to analyze the CO concentration 219 

and 𝛌CO. And finally, O3 observations were only used to analyze the O3 concentration. 220 

 221 

3. Observations and errors 222 

The surface chemical observations used in this study were obtained from the Ministry 223 

of Ecology and Environment of China. Altogether, there were 876 observational sites 224 

over the model domain (Figure 1). At most sites, one measurement was selected 225 

randomly for the assimilation experiment on a 0.1° × 0.1° grid. Altogether, 355 stations 226 

were kept for the model domain, where 133 assimilation stations were located on the 227 

NCP and 40 stations were located in the Beijing–Tianjin–Hebei (BTH) region. Other 228 

stations were used for verification purposes: 167 independent stations were located on 229 

the NCP and 47 in the BTH region. 230 

The observation error covariance matrix 𝐑  included measurement errors and 231 
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representation errors. We assumed that 𝐑 is a diagonal matrix (without observation 232 

correlation). 233 

Following Elbern et al. (2007), the measurement error 𝜀0 is defined as 234 

𝜀0 = 𝑎 + 𝑏 ∗ Π0,                                       (9) 235 

where Π0 represents the measurements for PM2.5, PM10-2.5, SO2, NO2, CO or O3 (units: 236 

μg·m−3). A value of 𝑎 = 1.5 and 𝑏 = 0.0075 was chosen for PM2.5, PM10-2.5, SO2, 237 

and NO2. For CO, 𝑎 = 10 and 𝑏 = 0.0075. 238 

The representativeness error is defined as 239 

𝜀𝑟 = 𝑟𝜀0√Δ𝑥 L⁄ ,                                    (10) 240 

where 𝑟 = 0.5, Δ𝑥 = 40.5 km (the model resolution), and 𝐿 = 3 km due to the 241 

lack of the information of the station type (Elbern et al., 2007). 242 

Finally, the total error (𝜀t) is defined as 243 

𝜀t = √𝜀0
2 + 𝜀𝑟

2,                                         (11) 244 

In order to ensure data reliability, the observations were subjected to quality 245 

control before DA. Data values larger than a certain threshold were classified as 246 

unrealistic and were not assimilated. The threshold values were chosen as 700, 800, 247 

300, 300, 400 and 4000 μg·m−3 for PM2.5, PM10-2.5, SO2, NO2, O3 and CO, respectively. 248 

In addition, observations leading to innovations exceeding a certain value were also 249 

omitted. These threshold values were chosen as 70 μg·m−3 for PM2.5, PM10-2.5, SO2, 250 

NO2 and O3. Also, 1500 μg·m−3 was chosen for CO. 251 

 252 

4. Experimental design 253 

The DA experiment followed that of Peng et al. (2017), in which the assimilation 254 

of pure surface PM2.5 measurements with the EnKF was performed to correct finer 255 

aerosol variables and associated emissions. The experiment focused on an extreme haze 256 

event that occurred in October 2014 over North China. The 50-member ensemble spin-257 

up forecasts were performed from 1 to 4 October 2014, in which the ICs, the lateral 258 

boundary conditions and the emissions are perturbed by adding random noise. Then, 259 

the observed PM10, PM2.5, SO2, NO2, O3 and CO data starting from 5 to 16 October 260 
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were assimilated hourly to adjust the ICs and the corresponding emissions. 261 

After that, two sets of 72-h forecasts were performed, each at 00:00 UTC from 6 262 

to 15 October 2014, with hourly forecasting outputs for the assimilation experiment. 263 

These two sets of forecasting experiments were conducted using the ensemble mean of 264 

the concentration analysis as the ICs. One set of the experiments was forced by the 265 

optimized emissions (denoted as fcICsEs), and the other was forced by the prescribed 266 

anthropogenic emissions (denoted as fcICs). The aim was to use the difference between 267 

the fcICsEs and fcICs to indicate the impact of the optimized emissions. 268 

Moreover, we also run a control experiment. The ICs were based on the ensemble 269 

mean of the spin-up forecasts at 00:00 UTC on 5 October 2014. The emissions were 270 

the prescribed emissions. 271 

 272 

5. Results 273 

5.1 Ensemble performance 274 

We begin by assessing the ensemble performance for the DA system. Figure 2 shows 275 

the time series of the prior total spreads and the prior root-mean-square errors (RMSEs) 276 

for PM2.5, PM10, and the four trace gases calculated against all observations in the BTH 277 

region. It shows that the magnitudes of the total spreads were close to the RMSEs, 278 

indicating that the DA system was well calibrated (Houtekamer et al., 2005). 279 

Figure 3 shows the area-averaged time series extracted from the ensemble spread 280 

of the six emission scaling factors (𝛌PM2.5
f , 𝛌PM10

f , 𝛌SO2
f , 𝛌NO

f , 𝛌NH3
f  and 𝛌CO

f ) in the 281 

BTH region. It shows that the ensemble spread of all the scaling factors were very stable 282 

throughout the ~10-day experiment period, which indicates that 𝐌SF  can generate 283 

stable artificial data to generate the ensemble emissions. The value of the emission 284 

scaling factors ranged from 0.2 to 0.6, indicating that the uncertainty of the assimilated 285 

emissions was about 20%–60%. 286 

 287 

5.2 Forecast improvements 288 

In order to evaluate the overall performance of the DA system, time series of the hourly 289 

pollutant concentrations from the control run, the analysis, and the first-day forecast of 290 
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the two forecasting experiments were compared with the independent observations in 291 

the BTH region (Figure 4). Besides, model evaluation statistics (Table 3) were 292 

calculated against independent observations from 6 to 16 October 2014. In addition, 293 

biases and RMSEs were presented as a function of forecast range for the control, 294 

analysis, and forecast experiments (Figures 5–7). 295 

The control run did not perform very well, although it could capture the synoptic 296 

variability and reproduce the overall pollutant levels when there was a severe haze event. 297 

The statistics show that there were larger systematic biases and RMSEs and a smaller 298 

correlation coefficient (CORR) for the control (see Table 3). The biases were −34.1, 299 

−77.7, −565.7 and −31 μg·m−3 for PM2.5, PM10, CO, and O3, respectively, from 6 to 16 300 

October—about 29.7%, 44.5%, 42.9% and 53.9% lower than the corresponding 301 

observed concentrations. During the severe haze episode from 8 to 10 October in 302 

particular, when observed PM2.5 were larger than 200 μg·m−3, the biases reached −90.5, 303 

−143.1, −911.8 and −39.1μg·m−3, respectively—about 44.4%, 51.9%, 49.2% and 55.7% 304 

lower than the corresponding observed concentrations, suggesting a significant 305 

systematic underestimation of the WRF-Chem simulation. Additionally, a significant 306 

overestimation of 48.1 μg·m−3 was obtained for SO2—about 145.8% higher than the 307 

observed concentrations. As for the NO2 simulation, WRF-Chem was able to 308 

realistically describe the diurnal and synoptic evolution of NO2 concentrations. The 309 

model bias was 22.4 μg·m−3, which was about 39.7% higher than the observed NO2. 310 

These results were similar to the simulations of Chen et al. (2016). Most of the WRF-311 

Chem settings used here were the same as those used in Chen et al. (2016), except that 312 

they used CBMZ (Carbon Bond Mechanism, version Z) and MOSAIC (Model for 313 

Simulating Aerosol Interactions and Chemistry) as the gas-phase and aerosol chemical 314 

mechanisms. 315 

After the assimilation of surface observations, the time series of the hourly 316 

pollutant concentrations from the analysis showed much better agreement with 317 

observations than those from the control. The magnitudes of the bias and the RMSEs 318 

decreased and the CORRs increased for all six species. The biases were 5.1, −5.6, 8.1, 319 

−8.3, −160.4 and 2.1 μg·m−3 for PM2.5, PM10, SO2, NO2, CO and O3, respectively—320 
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about 4.4%, −3.2%, 24.5%, −14.7%, −12.17% and 3.7% of the corresponding observed 321 

concentrations, indicating that the analysis fields were very close to the observations. 322 

The RMSEs were 51.5, 63.4, 27.9, 31.7, 618.9 and 31.1 μg·m−3, respectively—about 323 

44.1%, 52.9%, 58.1%, 20.2%, 35.7% and 38.78% lower than the RMSEs of the control 324 

run. The CORRs reached 0.891, 0.890, 0.540, 0.557, 0.705 and 0.753, respectively. 325 

These statistics indicate that the DA system was able to adjust the chemical ICs 326 

efficiently. 327 

The PM2.5, PM10 and CO concentrations from both sets of forecasting experiments 328 

benefitted substantially from the DA procedure, as expected. Smaller biases and 329 

RMSEs were obtained for almost the entire 72-h forecast range (see Figures 5–7), as 330 

compared with the control run. For the first-day forecast in particular, the model 331 

performed almost perfectly. It faultlessly captured the diurnal and synoptic variability 332 

of the pollutant (see figure 4), in a manner that was very close to that of the analysis. 333 

The overall biases were 6.5, −11.9 and 100.4 μg·m−3 for PM2.5, PM10 and CO, 334 

respectively; and the RMSEs were 77.8, 98.7 and 805.1 μg·m−3, respectively, in 335 

fcICsEs24 (see Table 3). In fcICs24, the biases were 8.3, −10.3 and 130.2 μg·m−3, 336 

respectively; and the RMSEs were 75.1, 95.9 and 838.2 μg·m−3, respectively (see Table 337 

3). However, with longer-range forecasts, the impact of DA quickly decayed. The 338 

relative reductions in RMSE mostly ranged from 30% to 5% for the second- and third-339 

day forecast. From the perspective of the impact of the assimilated emissions, fcICs 340 

performed similarly to fcICsEs for PM2.5, PM10 and CO, indicating that ICs play key 341 

roles in aerosol and CO forecasts during severe haze episodes, while the impact of 342 

assimilated emissions seems negligible. 343 

For the SO2 verification forecast, however, fcICsEs performed much better than 344 

both fcICs and the control run. Smaller biases and RMSEs were obtained for almost the 345 

entire 72-h forecast range. At nighttime in particular (from 18 to 23 h, 42 to 47 h, and 346 

66 to 73 h), when there was significant systematic overestimation in the control run, 347 

both the biases and the RMSEs in fcICsEs were about 30% lower than those of the 348 

control run. During the daytime (from 0 to 9 h, 24 to 33 h, and 48 to 57 h), fcICsEs still 349 

performed slightly better, although the control run did a near perfect job. As for fcICs, 350 
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smaller biases and RMSEs were obtained for only the first 3 h. Then, the performance 351 

was the same as the control run, indicating that the impact of the ICs had disappeared. 352 

These results demonstrate the superiority of the assimilated emissions, and that the joint 353 

adjustment of SO2 ICs and emissions is an efficient way to improve the SO2 forecast. 354 

The NO2 DA results for the independent sites showed really poor performance 355 

(see Figures 5–7). Smaller biases were gained in the daytime of the experiment trials. 356 

At nighttime, however, when the simulated NO2 deviated considerably from the 357 

observations in the control run, the biases of both sets of the validation forecasts became 358 

even larger. Besides, almost all the RMSEs of both sets of the validation forecasts were 359 

always larger than those of the control run. 360 

The O3 DA results were dependent on the NO2 DA results in the daytime, due to 361 

chemical transformation. Both the biases and the RMSEs were larger, as compared with 362 

those of the control run (see Figures 5–7). However, at nighttime, when there was 363 

significant systematic underestimation in the control run, the biases in fcICsEs had very 364 

similar values to those of the analysis. Also, the biases in fcICs ranged between the 365 

analysis and the control run; and the RMSEs of both sets of forecasting experiments 366 

were about 10% smaller than those of the control run. All these results indicate that the 367 

DA system performed well at night. 368 

 369 

5.3 Emission optimization results 370 

Besides improved pollutant forecasts, improved estimates of emissions were expected 371 

from the joint DA procedure. The MEIC-2010 was constructed on the basis of annual 372 

statistical books in which the data were often 2–3 years older than the actual year (Chen 373 

et al., 2016). However, consistent efforts aimed at reducing and managing 374 

anthropogenic emissions have been made over the past decade to mitigate air pollution. 375 

Thus, there was a large difference between the emission year and our simulation year. 376 

Besides, the spatial allocations of these emissions over small spatial scales, and the 377 

monthly allocations, will also lead to some uncertainties. Lastly, the emissions 378 

inventory cannot fully capture the day-to-day variability or the actual daily variations, 379 

though its differentiation in terms of working days and weekend days, plus the daily 380 
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variations, can be taken into account in practical applications. However, in this 381 

assimilation procedure, the differentiation in terms of working days and weekend days, 382 

plus the daily variations, was ignored. Therefore, the prescribed anthropogenic 383 

emissions were subject to large uncertainties. 384 

Figures 8 and 9 display the spatial distribution of the prescribed emission rates and 385 

the differences between the analysis and the prescribed emission rates of PM2.5, PM10, 386 

NH3, SO2, NO and CO averaged over all hours from 6 to 16 October 2014 in the NCP 387 

region. The assimilated emission rates of PM2.5, SO2, NO and CO were lower than the 388 

prescribed emissions on the whole. In the BTH region especially, the differences 389 

reached −0.02 μg·m−2·s−1, −2.9, −8.8 and −24.65 mol·km−2·hr−1, which was a reduction 390 

of about 10%–20% of the prescribed emissions. For PM10 emissions, the assimilated 391 

values were very close to the prescribed ones, indicating that the prescribed PM10 392 

emissions had small uncertainties for the NCP region. For NH3 emissions, the 393 

assimilated values were a little larger than the prescribed emissions in large industrial 394 

cities like Beijing, Tianjin, Baoding, Xingtai, Handan, and Taiyuan. However, they 395 

were smaller than the prescribed emissions in agricultural regions, especially in 396 

Shandong Province and Henan Province. However, in the BTH region, the assimilated 397 

NH3 emissions were very close to the prescribed emissions on the whole. 398 

Figure 10 shows the time series of the emission scaling factors and the emissions. 399 

As concluded in Peng et al. (2017), the forecast emission scaling factors changed with 400 

the analyzed emission scaling factors due to the use of the time smoothing operator. 401 

Besides, although the prescribed emissions were constant when designing the 402 

assimilation experiment, the analyzed emission scaling factors showed obvious 403 

variation with time, as did the analyzed emissions. For the assimilated SO2 and NO 404 

emissions in particular, the diurnal variations were perfect. In addition, the difference 405 

between the assimilated emissions and the prescribed emissions were consistent with 406 

those in Figures 8 and 9. The assimilated emissions of PM2.5, SO2, NO and CO were 407 

apparently lower than the corresponding prescribed emissions. Whereas, the values of 408 

the assimilated emissions of PM10 and NH3 were very close to their corresponding 409 

prescribed emissions. 410 
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 411 

5.4 Discussion 412 

From the results presented above, it is clear that improvements were achieved for 413 

almost all the 72-h verification forecasts using the optimized ICs and emissions for 414 

PM2.5, PM10, SO2 and CO concentrations in the BTH region. However, the 72-h NO2 415 

verification forecasts performed much worse than the control run, due to the 416 

assimilation. Plus, the 72-h O3 verification forecasts performed worse than the control 417 

run during the daytime, due to the worse performance of the NO2 forecasts, although 418 

they did perform better at night. However, relatively favorable NO2 and O3 forecast 419 

results were gained for the Yangtze River delta and Pearl River delta (PRD) regions 420 

(see Figure 11). In the PRD region, during the daytime, the three NO2 forecasts (i.e., 421 

the control run, the fcICsEs, and the fcICs) performed similarly, and had relatively 422 

small biases and RMSEs. At nighttime, when there was significant systematic 423 

overestimation in the control run, the biases and the RMSEs in fcICsEs were much 424 

smaller than those in the control run. For the O3 72-h verification forecasts, fcICsEs 425 

performed much better than the control run, except for the first 8 h. Also, fcICs 426 

improved the O3 forecasts to some extent from the 9- to 72-h forecast range. These 427 

results indicate that DA is still an effective way to improve NO2 and O3 forecasts. 428 

Regarding the failure to improve the NO2 and O3 forecasts in the BTH region, 429 

there are three likely factors. And certainly, NO2 and O3 forecasts in other areas are also 430 

facing similar challenges. 431 

Firstly, there are still some limitations for the EnKF method. EnKF assimilation is 432 

influenced greatly by model errors and observation errors. For short-lived chemical 433 

reactive species, such as NO2 and O3, they undergo highly complex nonlinear 434 

photochemical reactions, even on timescales of hours, such that the forecast accuracy 435 

is largely dependent on the chemical process as well as the physical transportation 436 

process, the ICs, and the emissions. However, those complex photochemical reaction 437 

processes are not precisely described in current chemical mechanisms, e.g., 438 

heterogeneous reactions (Yang et al., 2015), the photolysis of nitrous acid and ClNO2 439 

during daytime (Zhang et al., 2017), and so on. Therefore, on the one hand, there are 440 
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still large uncertainties for NO2 and O3 forecasts; whilst on the other hand, it is very 441 

difficult for NO2 and O3 DA to accurately estimate the model errors with a limited 442 

ensemble size. Thus, NO2 and O3 assimilations do not perform well (Elbern et al., 2007; 443 

Tang et al., 2016). However, for SO2 and CO, which are representative of long-lived 444 

chemical reactive species, the chemical reaction process does not work 445 

on timescales of hours, meaning that to some extent hourly chemical DA has the 446 

potential to improve their forecasts. For CO in particular, due to its inertness, we might 447 

be able to obtain high-quality ICs and emissions through DA. The primary sources of 448 

aerosol are the dominant part of the atmospheric aerosol concentration. So, 72-h aerosol 449 

forecasts may perform similarly to CO, albeit there are large uncertainties in the 450 

chemical model. 451 

Secondly, the analysis ICs and emissions are only a mathematical optimum under 452 

the existing conditions. Only part of the chemical ICs and emissions are involved in the 453 

DA experiment; and VOC ICs and emissions, which may greatly influence the NO2 and 454 

O3 forecasts, were not included here because of the absence of VOC measurements. 455 

Although we carried out two DA sensitivity experiments to adjust the VOC ICs and 456 

emissions through the use of NO2 or O3 measurements, we were still unable to gain 457 

improved NO2 and O3 forecasts in the BTH region in both DA experiments. VOC 458 

measurements are needed to reduce uncertainties of VOC ICs and emissions. In 459 

addition, almost all available data were observed in cities, and no observation stations 460 

located in rural. Thus, the atmospheric environmental monitoring system was still 461 

spatially heterogeneous. 462 

Another important point is that there are still limitations to the current chemical 463 

mechanisms used in our model, such as the treatment of model error. NO is the primary 464 

species of NOx emissions in city areas, and reacts directly with O3 to form NO2 (NO+O3465 

→NO2+O2). Thus, O3 concentrations may inversely correlate with NO2 concentrations 466 

at night. Consequently, air quality models may systematically underestimate O3 467 

concentrations. Currently, DA can only revise the ICs and the emissions in this work. It 468 

cannot change the model performance, especially when there are certain uncertainties 469 

for the meteorological simulation. 470 
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 471 

6. Summary 472 

In this study, we developed an EnKF system to simultaneously assimilate surface 473 

measurements of PM10, PM2.5, SO2, NO2, O3 and CO via the joint adjustment of ICs 474 

and source emissions. This system was applied to assimilate hourly pollution data while 475 

modeling an extreme haze event that occurred in early October 2014 over North China. 476 

In order to evaluate the impact of DA, two sets of 72-h verification forecasts were 477 

performed. One was conducted with the optimized ICs and emissions, and the other 478 

with only optimized ICs and the prescribed emissions. A control experiment without 479 

DA was also performed for comparison. 480 

The results showed that both verification forecasts performed much better than the 481 

control simulations for PM2.5, PM10 and CO. Obvious improvements were achieved for 482 

almost the entire 72-h forecast range. For the first-day forecast especially, near perfect 483 

forecasts results were achieved. However, with longer-range forecasts, the impact of 484 

DA quickly decayed. In addition, the forecasts with only optimized ICs and the 485 

prescribed emissions performed similarly to that with the optimized ICs and emissions, 486 

indicating that ICs play key roles in PM2.5, PM10 and CO forecasts during severe haze 487 

episodes. 488 

Also, large improvements were achieved for SO2 forecasts with both the optimized 489 

ICs and emissions for the whole 72-h forecast range. However, similar improvements 490 

were achieved for SO2 forecasts with the optimized ICs only for just the first 3 h, and 491 

then the impact of the ICs decayed quickly to zero. This demonstrates that the joint 492 

adjustment of SO2 ICs and emissions is an efficient way to improve SO2 forecasts. 493 

Even though we failed to improve the NO2 and O3 forecasts in the BTH region, 494 

relatively favorable NO2 and O3 forecast results were gained in other areas. Also, the 495 

forecasts with both the optimized ICs and emissions performed much better than the 496 

forecasts with only optimized ICs and the prescribed emissions. These results indicate 497 

that there is still potential to improve NO2 and O3 forecasts via the joint adjustment of 498 

SO2 ICs and emissions. 499 

 500 
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 771 

Table 1. WRF-Chem model configurations in this study. 772 

Parameterization WRF-Chem Option 

Aerosol scheme Goddard Chemistry Aerosol Radiation and Transport (Chin et al., 2000, 2002) 

Photolysis scheme Fast-J (Wild et al., 2000) 

Gas-phase chemistry Regional Atmospheric Chemistry Mechanism (Stockwell et al., 1997) 

Microphysics the WRF single-moment 5 class scheme 

Longwave radiation Rapid Radiative Transfer Model longwave scheme (Mlawer et al., 1997) 

shortwave radiation Goddard shortwave radiation scheme (Chou and Suarez, 1994) 

Planetary boundary layer Yonsei University boundary layer scheme (Hong et al., 2006) 

cumulus parameterization Grell-3D scheme 

Land-surface model NOAH (Chen and Dudhia, 2001) 

Dust and sea salt emissions Goddard Chemistry Aerosol Radiation and Transport (Chin et al., 2002) 
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 775 

Table 2. State vectors in the data assimilation system. 776 

Observations PM2.5 PM10-2.5 SO2 NO2 CO O3 

Mass 

concentration 

P25, S, OC1, OC2 BC1, 

BC2, D1, D2, S1, S2 

P10, D3, D4, 

D5 S3, S4, 
SO2 

NO, 

NO2 
CO O3 

Scaling factors 𝛌PM2.5, 𝛌NH3 𝛌PM10 𝛌SO2 𝛌NO 𝛌CO ― 
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 779 

 780 

Figure 1. The model domain (left) and the North China Plain (right). Black dots are 781 

the observational sites used for assimilation, and red stars are the observational sites 782 

used for validation. The green frame marks the Beijing–Tianjin–Hebei region. 783 
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 785 

 786 

Figure 2. Time series of prior ensemble mean RMSE (blue line) and total spread 787 

(black line) for PM2.5, PM10, SO2, NO2, CO and O3 concentrations aggregated over all 788 

observations over the Beijing–Tianjin–Hebei region. Units for all these variables are 789 

μg·m−3. 790 
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 792 

 793 

 794 

Figure 3. Time series of the area-averaged ensemble spread for the emission scaling 795 

factors over the Beijing–Tianjin–Hebei region. 796 
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 798 

 799 

Figure 4. Time series of the hourly pollutant concentrations in the Beijing–Tianjin–800 

Hebei (BTH) region obtained from observations (red line), the control run (black 801 

line), the analysis (pink line), the first-day forecast from fcICsEs (fcICsEs24, blue 802 

line), and the first-day forecast from fcICs (fcICs24, blue line). The observations were 803 

obtained from the 47 independent sites in the BTH region. The modelled time series 804 

were interpolated to the 47 independent sites using the spatial bilinear interpolator 805 

method. The shaded backgrounds indicate the distribution of the observations, where 806 

the top edge represented the 90th percentile and the bottom edge the 10th percentile. 807 

Units: μg·m−3. 808 
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Table 3. Comparison with observations of the surface PM2.5 mass concentrations in the Beijing–811 

Tianjin–Hebei region from the control experiment, the assimilation experiment, and the first-day 812 

forecast, over all analysis times from 6 to 16 October 2014. Units: μg·m−3. 813 

Species Experiment 
Mean observed 

value 

Mean simulated 

value 
BIAS RMSE CORR 

PM2.5 

Control 

114.8 

80.7 −34.1 92.1 0.740 

Analysis 

fcICsEs24 

fcICs24 

119.9 

121.2 

123.1 

5.1 

6.5 

8.3 

51.5 

77.8 

75.1 

0.891 

0.736 

0.748 

PM10 

Control 

174.6 

96.9 −77.7 134.6 0.691 

Analysis 169.0 −5.6 63.4 0.890 

fcICsEs24 

fcICs24 

162.7 

164.3 

−11.9 

−10.3 

98.7 

95.9 

0.716 

0.726 

SO2 

Control 

33.0 

81.1 48.1 66.6 0.088 

Analysis 41.1 8.1 27.9 0.540 

fcICsEs24 

fcICs24 

62.0 

75.7 

29.0 

42.7 

51.2 

65.8 

0.120 

0.038 

NO2 

Control 

56.4 

78.8 22.4 39.7 0.545 

Analysis 

fcICsEs24 

fcICs24 

48.0 

71.8 

82.8 

−8.3 

15.4 

26.4 

31.7 

46.2 

55.5 

0.557 

0.408 

0.414 

CO 

Control 

1318.0 

752.3 −565.7 962.7 0.354 

Analysis 

fcICsEs24 

fcICs24 

1157.5 

1418.4 

1448.2 

−160.4 

100.4 

130.2 

618.9 

805.1 

838.2 

0.705 

0.476 

0.439 

O3 

Control 

57.5 

26.5 −31.0 50.8 0.463 

Analysis 

fcICsEs24 

fcICs24 

59.6 

63.5 

58.98 

2.1 

6.0 

1.5 

31.1 

49.0 

50.5 

0.753 

0.460 

0.478 
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 816 

Figure 5. Bias of surface PM2.5, PM10, SO2, NO2, CO and O3 as a function of forecast 817 

range calculated against all the independent observations over the Beijing–Tianjin–818 

Hebei region shown in Figure 1. The 72-h forecasts were performed at each 0000 819 

UTC from 6 to 14 October 2014 and the statistics were computed from 6 to 14 820 

October. Units: μg·m−3. 821 

  822 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-768
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 30 July 2018
c© Author(s) 2018. CC BY 4.0 License.



33 
 

 823 

 824 

Figure 6. As in Figure 5 but for RMSE. Units: μg·m−3. 825 
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 827 

 828 

Figure 7. Normalized RMSE (assimilation divided by control) for fcICsEs and fcICs 829 

for PM2.5, PM10, SO2 and CO. 830 
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 833 

Figure 8. Spatial distribution of the prescribed emissions (top panels) of PM2.5 (left), PM10 834 

(middle), and NH3 (right) and the corresponding time-averaged differences between the ensemble 835 

mean analysis and the prescribed values at the lowest model level averaged over all hours 836 

from 6 to 16 October 2014 in the NCP region. Units for PM2.5 and PM10 emissions: 837 

μg·m−2·s−1; and for NH3 emissions: mol·km−2·hr−1. 838 

  839 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-768
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 30 July 2018
c© Author(s) 2018. CC BY 4.0 License.



36 
 

 840 

 841 

Figure 9. As in Figure 8 but for SO2 (left), NO (middle), and CO (right). Units for SO2, NO 842 

and CO emissions: mol·km−2·hr−1. 843 
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 845 

 846 

Figure 10. Hourly area-averaged time series extracted from the analyzed emission 847 

scaling factors (black line), the forecast emission scaling factors (green dashed line), 848 

the analyzed emissions (blue line), and the prescribed emissions (blue dashed line) in 849 

the Beijing–Tianjin–Hebei region. Units for PM2.5 and PM10 emissions: μg·m−2·s−1; 850 

and for NH3, SO2, NO and CO emissions: mol·km−2·hr−1. 851 
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 854 

Figure 11. NO2 and O3 time series of the hourly pollutant concentrations in the Pearl 855 

River Delta region (PRD, 21°–24°N, 112.5°–115°E) obtained from observations (red 856 

line), the control run (black line), the analysis (pink line), the first-day forecast from 857 

fcICsEs (fcICsEs24, blue line), and the first-day forecast from fcICs (fcICs24, blue 858 

line). The bias and RMSEs of surface NO2 and O3 as a function of forecast range 859 

calculated against all the independent observations (34 sites) over the PRD region. 860 

Units: μg·m−3. 861 
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